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Abstract This paper deals with a one-dimensional model for granular materials, which
boils down to an inelastic version of the Kac kinetic equation, with inelasticity parame-
ter p > 0. In particular, the paper provides bounds for certain distances—such as specific
weighted χ -distances and the Kolmogorov distance—between the solution of that equation
and the limit. It is assumed that the even part of the initial datum (which determines the
asymptotic properties of the solution) belongs to the domain of normal attraction of a sym-
metric stable distribution with characteristic exponent α = 2/(1 +p). With such initial data,
it turns out that the limit exists and is just the aforementioned stable distribution. A neces-
sary condition for the relaxation to equilibrium is also proved. Some bounds are obtained
without introducing any extra condition. Sharper bounds, of an exponential type, are ex-
hibited in the presence of additional assumptions concerning either the behaviour, close to
the origin, of the initial characteristic function, or the behaviour, at infinity, of the initial
probability distribution function.

Keywords Central limit theorem · Domains of normal attraction · Granular materials ·
Kolmogorov metric · Inelastic Kac equation · Stable distributions · Sums of weighted
independent random variables · Speed of approach to equilibrium · Weighted χ -metrics

Research partially supported by Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR grant
2006/134526).

F. Bassetti · E. Regazzini (�)
Dipartimento di Matematica, Università degli Studi di Pavia, via Ferrata 1, 27100 Pavia, Italy
e-mail: eugenio.regazzini@unipv.it

F. Bassetti
e-mail: federico.bassetti@unipv.it

L. Ladelli
Dipartimento di Matematica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milan, Italy
e-mail: lucia.ladelli@polimi.it

mailto:eugenio.regazzini@unipv.it
mailto:federico.bassetti@unipv.it
mailto:lucia.ladelli@polimi.it


684 F. Bassetti et al.

1 Introduction

This work deals with a one-dimensional inelastic kinetic model, as introduced in [30], which
can be thought of as a generalization of the Boltzmann-like equation due to Kac [27]. Mo-
tivations for research into equations for inelastic interactions can be found in many pa-
pers, generally devoted to Maxwellian molecules. Among them, in addition to the already
mentioned Pulvirenti and Toscani’s paper, it is worth quoting: [2–8, 10, 15]. See, in par-
ticular, a short but useful review in [32]. Returning to the main subject of this paper, the
one-dimensional inelastic model we want to study reduces to the equation
⎧
⎪⎨

⎪⎩

∂

∂t
f (v, t) + f (v, t) = 1

2π

∫

�×[0,2π)

f

(
vc(θ) − ws(θ)

J (θ)
, t

)

f

(
vs(θ) + wc(θ)

J (θ)
, t

)
dwdθ

J (θ)

f (v,0) := f0(v) (t > 0, v ∈ R)
(1)

where f (·, t) stands for the probability density function of the velocity of a molecule at time
t and

c(θ) := cos θ | cos θ |p, s(θ) := sin θ | sin θ |p, J (θ) := c(θ)2 + s(θ)2,

p being a nonnegative parameter. When p = 0, (1) becomes the Kac equation. It is easy to
check that the Fourier transform φ(·, t) of f (·, t) satisfies equation

⎧
⎪⎨

⎪⎩

∂

∂t
φ(ξ, t) = 1

2π

∫ 2π

0
φ(ξs(θ), t)φ(ξc(θ), t)dθ − φ(ξ, t)

φ(ξ,0) := φ0(ξ) (t > 0, ξ ∈ R),

(2)

where φ0 stands for the Fourier transform of f0.
Equation (2) can be considered independently of (1), thinking of φ(·, t) as Fourier–

Stieltjes transform of a probability measure μ(·, t), with μ(·,0) := μ0(·). In this case, dif-
ferently from (1), μ needn’t be absolutely continuous, i.e. it needn’t have a density function
with respect to the Lebesgue measure. In any case, μ(·, t) is completely determined by its
restriction to the class of intervals {(−∞, x], x ∈ R}, i.e. F(x, t) := μ((−∞, x], t). The
function x �→ F(x, t), defined for every x in R, is usually called (probability) distribution
function.

Due to dissipation, it is known that all finite energy solutions of (2) decay to the Dirac
mass at zero, but there are also infinite energy solutions which converge to non-trivial steady
states. See, e.g., [30] and the next Theorem 2.1. The present paper aims at investigating the
asymptotic behaviour of this kind of solutions.

Following [33], φ can be expressed as

φ(ξ, t) =
∑

n≥1

e−t (1 − e−t )n−1q̂n(ξ ;φ0) (t ≥ 0, ξ ∈ R) (3)

where
{

q̂1(ξ,φ0) := φ0(ξ)

q̂n(ξ ;φ0) := 1
n−1

∑n−1
j=1 q̂n−j (ξ ;φ0) ◦ q̂j (ξ ;φ0) (n = 2,3, . . .)

(4)

and

g1 ◦ g2(ξ) = 1

2π

∫ 2π

0
g1(ξc(θ))g2(ξs(θ))dθ (ξ ∈ R)
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is the so-called Wild product. The Wild representation (3) can be used to prove that the Kac
equations (1) and (2) have a unique solution in the class of all absolutely continuous proba-
bility measures and, respectively, in the class of the Fourier–Stieltjes transforms of all prob-
ability measures on the Borel sets of R. Moreover, this very same representation, as pointed
out by [28], can be reformulated in such a way as to show that φ(·, t) is the characteristic
function of a completely specified sum of real-valued random variables. This represents an
important point for the methodological side of the present work. Indeed, thanks to the McK-
ean interpretation, our study will take advantage of methods and results pertaining to the
central limit theorem of probability theory.

As to the set-up of the paper, in the second part of the present section we provide the
reader with preliminary information—mainly of a probabilistic nature—which is necessary
to understand the rest of the paper. In Sect. 2 we present the new results, together with
a few hints at the strategies used to prove them. The most significant steps of the proofs
are contained in Sect. 3, devoted to asymptotics for weighted sums of independent random
variables. The methods used in this section are essentially inspired by previous work of
Harald Cramér and by its developments due to Peter Hall. See [12, 13, 24]. Completion of
the proofs is deferred to the Appendix.

1.1 Probabilistic Interpretation of Solutions of (1)–(2)

It is worth lingering over the McKean reformulation of (4), following [19]. Consider the
product spaces

	t := N × G × [0,2π)N × R
N

with G = ⋃
n G(n), G(n) being a set of certain binary trees with n leaves. These trees are

defined so that each node has either zero or two “children”, a “left child” and a “right child”.
See Fig. 1.

Now, equip 	t with the σ -algebra

Ft := P(N × G) ⊗ B([0,2π)N) ⊗ B(RN)

where, given any set S, P(S) denotes the power set of S and, if S is a topological space,
B(S) indicates the Borel σ -algebra on S. Define (νt , γt , θt ,Xt ), with θt := (θt,n)n≥1 and
Xt := (Xt,n)n≥1, to be the coordinate random variables of 	t . At this stage, for each tree in

Fig. 1 Example of binary trees. Shaded (unshaded) circles stand for leaves (nodes)
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G(n) fix an order on the set of all the (n − 1) nodes and, accordingly, associate the random
variable θt,k with the k-th node. See (a) in Fig. 1. Moreover, call 1,2, . . . , n the n leaves
following a left to right order. See (b) in Fig. 1. Define the depth of leaf j—in symbols,
δj —to be the number of generations which separate j from the “root” node, and for each
leaf j of a tree, form the product

βj,t :=
δj∏

i=1

α
(j)

i

where: α
(j)

δj
equals c(θt,k) if j is a “left child” or s(θt,k) if j is a “right child”, and θt,k is the

element of θt associated to the parent node of j ; α
(j)

δj −1 equals c(θt,m) or s(θt,m) depending
on the parent of j is, in its turn, a “left child” or a “right child”, θt,m being the element of θt

associated with the grandparent of j ; and so on. For the unique tree in G(1) it is assumed
that β1,t = 1. For instance, as to leaf 1 in Fig. 1(a), β1,t = c(θt,4) · c(θt,2) · c(θt,1) and, for leaf
6, β6,t = s(θt,5) · c(θt,3) · s(θt,1).

From the definition of the random variables βj,t it is plain to deduce that

νt∑

j=1

|βj,t |α = 1,

holds true for any tree in G(νt ), with

α := 2

1 + p
.

For further information on this construction, see [9, 19, 29].
It is easy to verify that there is one and only one probability measure Pt on (	t , Ft ) such

that

Pt {νt = n,γt = g, θt ∈ A,Xt ∈ B}

=
{

e−t (1 − e−t )n−1pn(g)u⊗N(A)μ⊗N

0 (B) if g ∈ G(n)

0 if g /∈ G(n)

where, for each t ,

• pn is a well-specified probability on G(n), for every n.
• u⊗N is the probability distribution that makes the θt,n independent and identically distrib-

uted with continuous uniform law on [0,2π).
• μ⊗N

0 is the probability distribution according to which the random variables Xt,n turn out
to be independent and identically distributed with common law μ0.

Expectation with respect to Pt will be denoted by Et and integrals over a measurable set
A ⊂ 	 will be often indicated by Et(·;A).

In this framework one gets the following proposition, a proof of which can be obtained
from obvious modifications of the proofs of Theorem 3 and Lemma 1 in [19].

(F1) The solution f (·, t) (φ(·, t), respectively) of (1) ((2), respectively) can be viewed as
a probability density function (the characteristic function, respectively) of

Vt :=
νt∑

j=1

βj,tXt,j
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for any t > 0. Moreover, β(νt ) := max{|β1,t |, . . . , |βνt ,t |} converges in distribution to zero as
t → +∞.

As a first application of this proposition, one easily gets

φ(ξ, t) = Et [Et(e
iξVt |νt )]

= e−tφ0(ξ) + e−t
∑

n≥2

(1 − e−t )n−1q̂n(ξ ;φ0).

Then, since q̂n(ξ ;φ0) = q̂n(ξ ;Re(φ0)) for any n ≥ 2—with Re(z) = real part of z—the con-
ditional characteristic function of Vt , given {νt = n}, coincides with the characteristic func-
tion of Vt when φ0 is replaced by its real part. Whence,

φ(ξ, t) = e−t
∑

n≥1

(1 − e−t )n−1q̂n(ξ ;Re(φ0)) + iIm(φ0(ξ))e−t (5)

with Im(z) := imaginary part of z. The distribution corresponding to Re(φ0) is symmet-
ric, or even part of μ0, as it is sometimes labelled. In fact, Re(φ0) turns out to be an even
real-valued characteristic function, and, generally speaking, this fact does actually simplify
certain computations. It should be pointed out that if the initial datum μ0 is a symmet-
ric probability distribution, then the distribution of Vt is the same as the distribution of
∑νt

j=1 |βj,t |Xt,j .

1.2 Topics on Stable Distributions

It can be proved that the possible limits (in distribution) of Vt , as t → +∞, have character-
istic functions φ which are solutions of

1

2π

∫ 2π

0
φ(ξs(θ))φ(ξc(θ))dθ = φ(ξ) (ξ ∈ R). (6)

This result has been communicated to us by Filippo Riccardi, who proved it by resorting to
a suitable modification of the Skorokhod representation used in the Appendix of the present
paper. We didn’t succeed in finding all the solutions of (6), but it is easy to check that

ĝα(ξ) = exp{−a0|ξ |α} (ξ ∈ R) (7)

is a solution of (6), for any a0 ≥ 0. In point of fact, for suitable (infinite energy) initial
distributions the pointwise limit of the solution of (2) exists and is given by (7), which,
in turn, is strictly connected with certain sums of random variables. Indeed, (7) is a stable
real-valued characteristic function with characteristic exponent α and, in view of a classical
Lévy’s theorem,

(F2) If X1,X2, . . . are independent and identically distributed real-valued random vari-
ables, with symmetric common distribution function F0, then in order that the random vari-
able X be the limit in distribution of the normed sum

∑n

i=1 Xi/n1/α it is necessary and
sufficient that X has characteristic function (7) for some a0 ≥ 0.

It is worth recalling that the probability distribution function, at x, of a random variable
Y is defined to be the probability that Y belongs to the interval (−∞, x], for every real x.

Due to (F1) one could guess that (F2) may be used to get a direct proof of the fact that Vt

converges in distribution to a stable random variable with characteristic function (7). This
way, one would obtain that these characteristic functions are all possible pointwise limits,
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as t → +∞, of solutions φ(·, t) of (2). In point of fact, direct application of results like
(F2) is inadmissible, since Vt is a weighted sum of a random number of summands affected
by random weights which are not stochastically independent. In spite of this, by resorting
to suitable forms of conditioning for Vt , one can take advantage of classical propositions
pertaining to the central limit theorem.

In addition to the problem of determining the class of all possible limit distributions
for Vt , an obvious question which arises is that of singling out necessary and sufficient
conditions on μ0, so that it may converge in distribution to some specific random variable.
As to the classical setting mentioned in (F2), it is worth recalling that

(F3) If X1,X2, . . . are independent and identically distributed real-valued random vari-
ables, with (not necessarily symmetric) common distribution function F0, then in order that
(
∑n

i=1 Xi/n1/α − mn)n≥1 converges in law to a random variable with characteristic func-
tion (7) with some specific value for a0—or, in other words, that F0 belong to the domain of
normal attraction of (7)—it is necessary and sufficient that F0 satisfies |x|αF0(x) → c1 as
x → −∞ and xα(1 − F0(x)) → c1 as x → +∞, i.e.

F0(−x) = c1

|x|α + S1(−x) and 1 − F0(x) = c1

xα
+ S2(x) (x > 0)

Si(x) = o(|x|−α) as |x| → +∞ (i = 1,2).
(8)

For more information on stable laws and central limit theorem see, for example, Chap. 2
of [26] and Chap. 6 of [22]. To complete the description of certain facts that will be men-
tioned throughout the paper, it is worth enunciating

(F4) If φ0 stands for the Fourier–Stieltjes transform of a probability distribution function
F0 satisfying (8), then

1 − φ0(ξ) = (a0 + v0(ξ))|ξ |α (ξ ∈ R)

where v0 is bounded and |v0(ξ)| = o(1) as |ξ | → 0.
(F4), which is a paraphrase of Théorème 1.3 of [25], can be proved by mimicking the

argument used for Theorem 2.6.5 of [26].

2 Presentation of the New Results

In the present paper our aims are: firstly, to find initial distribution functions F0 (or initial
characteristic functions φ0) so that the respective solutions of (2) may converge pointwise to
(7); secondly, to determine the rate of convergence of the probability distribution function
F(·, t), corresponding to φ(·, t), to a stable distribution function Gα with characteristic ex-
ponent α = 2/(1+p), with respect both to specific weighted χ -metrics and to Kolmogorov’s
distance, whose definitions are given just below.

It is well-known—from the Lévy continuity theorem—that pointwise convergence of se-
quences of characteristic functions is equivalent to weak convergence of the corresponding
distribution functions. In particular, in our present case, since the limiting distribution func-
tion Gα is (absolutely) continuous, weak convergence is equivalent to uniform convergence,
i.e.

sup
x∈R

|F(x, t) − Gα(x)| → 0 as t → +∞. (9)

Left-hand side of (9) is just the Kolmogorov distance (K , in symbols) between
F(·, t) and Gα . As to the above-mentioned first aim, besides sufficient conditions for



Probabilistic Study of the Speed of Approach to Equilibrium 689

convergence—which boil down to the fact that F0 belongs to the domain of normal attrac-
tion of (7)—a necessary condition for convergence is given. As far as rates of convergence
are concerned, results can be found in the paper of Pulvirenti and Toscani, with respect to
a specific weighted χ -metric, used to study convergence to equilibrium of Boltzmann-like
equations starting from [21]. See also [31]. Denoting this distance by χs , s being some
positive number, one has

χs(F (·, t),Gα) := sup
ξ∈R

|φ(ξ, t) − exp(−ao|ξ |α)|
|ξ |s .

With reference to (1), after writing gα for a density of Gα , Theorem 6.2 in [30] reads:
(F5) Let p > 1 with f0 such that

∫

R
|v|α+δ|f0(v)−gα(v)|dv is finite for some δ in (0, (1−

α) ∧ α). Then

χα+δ(F (·, t),Gα) ≤ χα+δ(F0,Gα) exp{−t (1 − 2A2(1+δ/α))} (10)

holds true for every t ≥ 0, with

Am := 1

2π

∫ 2π

0
| sin θ |mdθ = �(m

2 + 1
2 )√

π �(m
2 + 1)

(m ≥ 0). (11)

Moreover, (10) is still valid if 0 < p ≤ 1 and
∫

R
|v|α+δ|f0(v) − gα(v)|dv if finite for some δ

in (0, αp].
It should be pointed out that the proof of (F5) provided in [30] rests on a hypothesis that

is weaker than the one evoked in (F5), i.e.

|v0(ξ)| = O(|ξ |δ) as ξ → 0 (12)

for some δ > 0.
In the present paper we prove weak convergence of F(·, t) to Gα under much more

general hypotheses than those adopted in (F5). For reader’s convenience, it is worth noticing
that the probability distribution function F ∗

0 corresponding to Re(φ0) (see the final part of
Sect. 1.2) coincides with

1

2
{F0(x) + 1 − F0(−x)}

at each point x of continuity for F0. In view of (F3)–(F4), if F0 belongs to the domain of
normal attraction of (7), then there is a nonnegative c0 for which

lim
x→−∞|x|αF ∗

0 (x) = lim
x→+∞xα(1 − F ∗

0 (x)) = c0 (13)

and the characteristic function associated to F ∗
0 , i.e. Re(φ0), satisfies

1 − Re(φ0(ξ)) = (a0 + v∗
0(ξ))|ξ |α (14)

or some bounded, real-valued v∗
0 such that |v∗

0(ξ)| = o(1) as ξ → 0. Moreover, c0 is related
to a0 by

a0 = 2c0

∫ +∞

0

sin(x)

xα
dx.

The precise statement of the aforementioned convergence reads
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Theorem 2.1 Given p > 0, let the initial data for problems (1)–(2) satisfy

lim
x→+∞(1 − F ∗

0 (x))xα = c0.

Then

lim
t→+∞ K(F(·, t),Gα) = 0.

In particular, if c0 = 0, then for every ε > 0 one has

lim
t→+∞ F(−ε, t) = lim

t→+∞(1 − F(ε, t)) = 0,

i.e. the weak limit of μ(·, t) is the point mass δ0. On the other hand, if p > 0 and there is a
strictly positive and increasing sequence (tn)n≥1, divergent to +∞, such that (F (·, tn))n≥1

converges weakly to any probability distribution function, then

0 ≤ lim
ξ→+∞ inf

x≥ξ
xα(1 − F ∗

0 (x)) < +∞.

Proof of Theorem 2.1 is deferred to the Appendix.
After presenting the most general statement we achieved about the weak convergence

of F(·, t), let us proceed to investigate how convergence is fast. Pulvirenti and Toscani’s
argument to prove (F5) lies in studying (4) directly via suitable inequalities and from an
analytical viewpoint. In contrast, in our approach one starts from inequality

|φ(ξ, t) − ĝα(ξ)| ≤ Et(|φ̃νt (ξ) − ĝα(ξ)|) (15)

where ĝα is defined by (7) and, according to (F1), φ̃νt represents the conditional characteris-
tic function of Vt given (νt , γt , θt ). Hence, from the beginning, we try to obtain bounds for
|φ̃νt (ξ) − ĝα(ξ)|. This is tantamount to investigating bounds for |φ̃n(ξ) − ĝα(ξ)| when φ̃n is
the characteristic function of

Sn :=
n∑

l=1

q
(n)
l Xl (16)

with X1,X2, . . . independent and identically distributed random numbers, with common
distribution function F0, and

q
(n)
l ≥ 0 for l = 1, . . . , n, n = 1,2, . . . such that

n∑

l=1

(q
(n)
l )α = 1. (17)

Think of n and (q
(n)

1 , . . . , q(n)
n ) as realizations of νt and (|β1,t |, . . . , |βνt ,t |), respectively.

According to (F1) one can assume

q(n) := max{q(n)

1 , . . . , q(n)
n } → 0 as n → +∞. (18)

We study this problem—prior to the investigation of rates of convergence for Vt —under the
additional conditions that F0 is symmetric (and, consequently, the corresponding character-
istic function φ0 is even) and that it belongs to the domain of normal attraction of ĝα . See
(F3)–(F4) and (13)–(14). This way we also get bounds for convergence in law of weighted
sums Sn to stable random variables, which are of interest in themselves and, as far as we
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know, seem to be new. They are explained and precisely formulated in Sect. 3. Resuming
now the main issue of the speed of convergence of Vt to equilibrium, some further notation
is needed. We set

‖v∗
0‖ := sup

ξ≥0
|v∗

0(ξ)|, M := a0 + ‖v∗
0‖, v̄∗

0(ξ) := sup
0≤x≤ξ

|v∗
0(x)|

and, given η ∈ (0, a0), define d to be some element of (0,1) such that

4

5
M2|x|α + v̄∗

0(x) ≤ η

comes true whenever |x| ≤ (3d/(8M))1/α . Next, we put Mr := maxx≥0 xrαe−(a0−η)xα
, d1 :=

(3/(8M))1/α , k∗ = v̄∗
0(d1d

1/α)(1 + 2dα
1 d1−αv̄∗

0(d1d
1/α)) + (4/5)M2dα

1 d + (32/25)M4d3α
1

d3−α .

2.1 Speed of Approach to Equilibrium with Respect to Weighted χ -Metrics

Now we are in a position to present our first results which concern convergence of F(·, t) to
Gα with respect to χ -metrics.

Theorem 2.2 Let F0 belong to the domain of normal attraction of Gα with α = 2/(1 + p),
for some p > 0. Define v0 and v∗

0 to be the same as in (F4) and (14), respectively. Set
β(νt ) := max{|β1,t |, . . . , |βνt ,t |}. Then

χα(F (·, t),Gα) ≤ Et(v̄
∗
0(d1β

c
(νt )

)) + 2M1Et(v̄
∗
0(d1β

c
(νt )

)2) + 4

5
M2M1Et(β

α
(νt )

)

+ 32

25
M3M

4Et(β
2α
(νt )

) +
(

k∗ + 2

ddα
1

)

Pt {β(νt ) > d ∧ d1/cα}

+ 2

dα
1

Et(β
α(1−c)

(νt )
) + e−t sup

ξ∈R

|Im(v0(ξ))|

is valid for any c in (0,1).

The upper bound provided in Theorem 2.2 goes to zero as t → +∞ thanks to (F1), (F4)
and the definition of v̄∗

0 . Then, it can be used to yield further bounds, either via the statement
of specific upper bounds for the expectations which appear in the right-hand side or through
the adoption of suitable extra conditions on v0. As to the former way of arguing, it is worth
recalling that Proposition 8 in [18] gives

Et

( νt∑

j=1

|βj,t |m
)

= Et

( νt∑

j=1

A
δj

m(1+p)

)

(δj = depth of leaf j)

= exp{−t (1 − 2Am(1+p))} (m ≥ 0)

(19)

with Am defined as in (11). Moreover, from Lemma 1 in [19],

Pt {β(νt ) > x} ≤ x
− q

1+p e−t (1−2Aq) (0 < x < 1, q > 0) (20)

which, in turn, yields

Et(β
m
(νt )

) ≤ e−σmt + e−t (1−qσα/2−2Aq) (21)
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for any positive σ and q . Now, define U1,t as

U1,t : = v̄∗
0(d1β

c
(νt )

) + 2M1(v̄
∗
0(d1β

c
(νt )

))2 + 4

5
M2M1β

α
(νt )

+ 32

25
M3M

4β2α
(νt )

+
(

k∗ + 2

ddα
1

)

I{β(νt ) > d ∧ d1/cα} + 2

dα
1

β
α(1−c)

(νt )
+ e−t sup

ξ∈R

|Im(v0(ξ))|

and set

M1,t := v̄∗
0(d1β

c
(νt )

) + 2M1(v̄
∗
0(d1β

c
(νt )

))2

R1,t := U1,t − M1,t .

Next, observe that the upper bound provided by Theorem 2.2 can be written as

Et(M1,t ) + Et(R1,t ) ≤ Et(M1,t ;β(νt ) ≤ xt ) + M(1 + 2M1M)Pt {β(νt ) > xt } + Et(R1,t )

with xt := exp{−σ t} and σ satisfying 1 − 2Aq − σq/(1 + p) > 0 to obtain

χα(F (·, t),Gα) ≤ v̄∗
0(d1e

−cσ t ) + 2M1v̄
∗
0(d1e

−cσ t )2

+ M(1 + 2M1M)e−t (1−2Aq−σq/(1+p)) + Et(R1,t ). (22)

Then, since Et(R1,t ) can be re-written—thanks to (20)–(21)—as a sum of exponential func-
tions, (22) provides a bound entirely expressed, through v̄∗

0 , in terms of exponential functions
of t .

Exponential rates of relaxation to equilibrium hold true under some extra condition con-
cerning the local behavior of v0 near the origin.

Theorem 2.3 Assume that, in addition to the assumptions made in Theorem 2.2, (12) holds
for some δ > 0. Moreover, let d be chosen in such a way that |x| ≤ d1d

1/α entails |v0(x)| ≤
ρ|x|δ for some ρ > 0. Then,

χα+δ

(
F(·, t),Gα

) ≤
(
ρ + 2

dα+δ
1 d(α+δ)/α

)
e−t (1−2A2(1+δ/α))

+ 4

5
M2Mα−δ

α
e−t (1−2A4) + 2ρ2Mα+δ

α
e−t (1−2A2(1+2δ/α))

+ 32

25
M4M 3α−δ

α
e−t (1−2A6) + e−t sup

ξ∈R

1

|ξ |δ |Im(v0(ξ))|

holds true for δ in (0, α], while

χ2α

(
F(·, t),Gα

) ≤
(4

5
M2 + 2

d2α
1 d2

)
e−t (1−2A4)

+ ρMδ−α
α

e−t (1−2A2(1+δ/α)) + 32

25
M4M2e

−t (1−2A6)

+ 2ρ2M 2δ
α
e−t (1−2A2(1+2δ/α)) + e−t sup

ξ∈R

1

|ξ |α |Im(v0(ξ))|

is verified for δ in (α,2α].
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In short, this proposition can be condensed into the following statement: Under the hy-
potheses of Theorem 2.3, there are constants a1 and a2 such that:

χα+δ(F (·, t),Gα) ≤ a1e
−t (1−2A2(1+δ/α)) if δ ∈ (0, α],

χ2α(F (·, t),Gα) ≤ a2e
−t (1−2A4) if δ ∈ (α,2α].

Statements of the same type as Theorems 2.2 and 2.3 are proved in Sect. 5 in [20] for
α = 2 (p = 0), i.e. when Gα is a Gaussian distribution function with zero mean. Notice that
the rate of convergence given in the former part of the last theorem coincides with that of
Toscani and Pulvirenti previously quoted in (F5). The latter part of Theorem 2.3 and, mainly,
Theorem 2.2 seem to be new. See Sect. 2.4 for further comments.

2.2 Rates of Relaxation to Equilibrium in Kolmogorov’s Metric (Conditions Expressed on
the Characteristic Function φ0)

Rates of convergence of F(·, t) to Gα , in Kolmogorov’s metric, can be deduced from the
representation of Vt as weighted sum, via the well-known Berry-Esseen inequality in its
form given, for example, in Theorem 3.18 of [22]. It is worth recalling that application of
this inequality is allowed thanks to the fact that Gα has derivatives of all orders at every
point. Henceforth, given any strictly positive l and q , we put

Nl =
∫ +∞

0
exp{−(a0 − η)ξα}ξ l−1dξ

and

H(ξ, q) := |v∗
0(ξq)|(1 + 2|ξ |α|v∗

0(ξq)|), H̄ (ξ, q) := sup
u≤q

H(ξ,u)

with v∗
0 as in (14).

Theorem 2.4 If F ∗
0 belongs to the domain of normal attraction of Gα with α = 2/(1 + p)

for some p > 0, then

K(F(·, t),Gα) ≤ 2

π
Et

[ νt∑

j=1

|βj,t |α
∫ +∞

0
H(ξ, |βj,t |)ξα−1e−(a0−η)ξα

dξ

]

+ c‖gα‖
d̃

Et (β(νt )) + 8

5π
M2N2αe

−t (1−2A4) + 64

25π
M4N4αe

−t (1−2A6)

+ e−t

2
sup
x∈R

|F0(x) + F0(−x − 0) − 1|

c being the constant which appears in the above-mentioned version of the Berry-Esseen
inequality and d̃ := (3d/8M)1/α .

A further bound for K(F(·, t),Gα) can be obtained by replacing the summand

2

π
Et

[ νt∑

j=1

|βj,t |α
∫ +∞

0
H(ξ, |βj,t |)ξα−1e−(a0−η)ξα

dξ

]
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with

2

π
Et

[∫ +∞

0
H̄ (ξ,β(νt ))ξ

α−1e−(a0−η)ξα

dξ

]

.

Finally, it is worth presenting a bound of the same style as (22), entirely depending on
exponential functions:

K(F(·, t),Gα) ≤ 8

5π
M2N2αe

−t (1−2A4) + 64

25π
M4N4αe

−t (1−2A6)

+ e−t

2
sup
x∈R

|F0(x) + F0(−x − 0) − 1|

+
(

2

π
‖v∗

0‖(Nα + 2N2α‖v∗
0‖) + c‖gα‖

d̃

)

e−t (1−qσα/2−2Aq)

+ e−ρt c‖gα‖
d̃

+ 2

π

∫ +∞

0
H̄ (ξ, e−tσ )ξα−1e−(a0−η)ξα

dξ.

Notice that the above two bounds go to zero as t → +∞. Indeed, the latter goes to zero
since, on the one hand, limt→+∞

∫ +∞
0 H̄ (ξ, e−tσ )ξα−1e−(a0−η)ξα

dξ = 0 and, on the other
hand, σ and q can be chosen in such a way that 1 − qσα/2 − 2Aq turns out to be strictly
positive. Exponential bounds can be given under the usual condition on the behavior of v0

near the origin.

Theorem 2.5 If, besides the assumptions considered in Theorem 2.4, v∗
0 is such that

|v∗
0(ξ)| = O(|ξ |δ) as ξ → 0 for some δ > 0, and d is chosen to make sure that |ξ | ≤ d̃ =

(3d/8m)1/α entails |v∗
0(ξ)| ≤ ρ|ξ |δ , then

K(F(·, t),Gα) ≤ 8

5π
M2N2αe

−t (1−2A4) + 64

25π
M4N4αe

−t (1−2A6)

+ 2

π
ρNα+δe

−t (1−2A2+2δ/α) + 2ρ2N2α+2δe
−t (1−2A2+4δ/α)

+ c‖gα‖
d̃

Et (β(νt )) + e−t

2
sup
x∈R

|F0(x) + F0(−x − 0) − 1|.

In view of (21), the thesis of Theorem 2.5 can be formulated as: There are positive con-
stants a3 and b such that K(F(·, t),Gα) ≤ a3e

−bt for every t ≥ 0.

2.3 Convergence in Kolmogorov’s Metric (Conditions Expressed on the Initial Probability
Distribution F0)

A characteristic feature of the results presented until now is that all the assumptions
adopted to obtain bounds—in particular, extra conditions to achieve exponentially fast
convergence—are formulated in terms of conditions on the initial characteristic function.
In general, with respect to the actual choice of initial data, it is easier and more natural
to assign conditions on F0 than on φ0. Apropos of this remark, see the role played by
Lemma 6.1 in [30] and in Sect. 2.4 below. With reference to the classical case of inde-
pendent and identically distributed summands, see, for example, [12, 13, 24]. Accordingly,
the main objective of the rest of the section is to determine bounds for K(F(·, t),Gα), ex-
pressed in terms of quantities whose computation is generally easier than the computation of
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characteristic functions, once either F0 or some approximate form of F0 has been assigned.
To pave the way for presentation, let us complement previous notation given, in particular,
in Sect. 1.2:

h∗(x) := xαS∗(x) = xα{1 − F ∗
0 (x)} − c∗

0 = xαF ∗
0 (−x) − c∗

0 (x > 0)

b∗
1(x) := 2x

∫ +∞

D

sin(xu)S∗(u)du

where D is some strictly positive number and the integral has to be meant as improper
Riemann integral. Moreover,

B1 := 2k1N2 + 8k1k2N2+α, B2 := 8k2
1N4, B3 := 4k2N1+α + 2N1

B4 := 4k2N2+α + 2N2, B5 := 4

5
M2N2α, B6 := 32

25
M4N4α

with

k1 :=
∫ D

0
x|S∗(x)|dx, k2 := sup

x>0

|b∗
1(x)|
xα

≤ max

{

‖v∗
0‖ + 2k1,2

∫ +∞

D

|S∗(x)|dx

}

and

H ∗
1 (q) :=

∫ 1

0
y1−α|h∗(y/q)|dy, H ∗

2 (q) :=
∫ +∞

1
y−α|h∗(y/q)|dy

k3 := sup
q∈(0,1)

H ∗
1 (q), k4 := sup

q∈(0,1)

H ∗
2 (q).

Theorem 2.6 If F ∗
0 belongs to the domain of normal attraction of Gα with α = 2/(1 + p)

in [1,2), and
∫

R
|S∗(x)|dx < +∞ if α = 1, then

K(F(·, t),Gα) ≤ 2

π
Et

[ νt∑

j=1

|βj,t |α{B3H
∗
1 (|βj,t |) + B4H

∗
2 (|βj,t |)}

]

+ c‖gα‖
d̃

Et (β(νt )) + 2

π

{
B1e

−t (1−2A4/α) + B2e
−t (1−2A(8−2α)/α)

+ B5e
−t (1−2A4) + B6e

−t (1−2A6)
}

+ e−t

2
sup
x∈R

|F0(x) + F0(−x − 0) − 1|.

Then, setting H̄ ∗
i (x) := supy≤x H ∗

i (y) for i = 1,2, and recalling (21), we obtain a more
expressive form for the bound, that is

K(F(·, t),Gα) ≤ 2

π

{
B1e

−t (1−2A4/α) + B2e
−t (1−2A(8−2α)/α)

+
(
k3B3 + k4B4 + π

2

c‖gα‖
d̃

)
e−t (1−qσα/2−2Aq)

+ B5e
−t (1−2A4) + B6e

−t (1−2A6) + π

2

c‖gα‖
d̃

e−σ t

+ B3H̄
∗
1 (e−σ t ) + B4H̄

∗
2 (e−σ t )

}
+ e−t

2
sup
x∈R

|F0(x) + F0(−x − 0) − 1|.
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In order to obtain exponential bounds, we reinforce the assumptions made in Theo-
rem 2.6, in the sense that

|h∗(x)| ≤ ρ ′

|x|δ for some positive constant ρ ′ and δ in (0,2 − α). (23)

Theorem 2.7 Besides the assumptions made in Theorem 2.6, suppose (23) holds true. Then,

K(F(·, t),Gα) ≤ 2

π

{
B1e

−t (1−2A4/α) + B2e
−t (1−2A(8−2α)/α) + B5e

−t (1−2A4)

+ B6e
−t (1−2A6) +

(
ρ ′B3

2 − α − δ
+ ρ ′B4

α + δ − 1

)

e−t (1−2A2+2δ/α)
}

+ c‖gα‖
d̃

(e−σ t + e−t (1−qσα/2−2Aq)) + e−t

2
sup
x∈R

|F0(x) + F0(−x − 0) − 1|

which is tantamount to saying that there are positive constants a4 and b4 such that
K(F(·, t),Gα) ≤ a4e

−b4t holds for every t ≥ 0.

It remains to consider the case with α in (0,1). In point of fact, the next theorem is valid
for any α in (0,2), but it requires further notation. Firstly, S∗ is assumed to be monotonic on
[D,+∞). Then, one sets

b∗
2(x) := −2

∫ +∞

D

(1 − cos(xy))dS∗(y);

H ∗
3 (q) :=

∫ +∞

1
y−(1+α)|h∗(y/q)|dy, H̄ ∗

3 (q) := sup
y≤q

H ∗
3 (y), k5 := sup

q∈(0,1)

H ∗
3 (q);

B̄1 := 2k̄1N2 + 8k̄1k̄2N2+α + |S∗(D)|D2N2 + 2k̄2|S∗(D)|D2N2+α,

B̄2 := 8k̄2
1N4, B̄3 := 2z0 + 4zαk̄2

with

k̄1 := k1 + D2|S∗(D)|
2

,

k̄2 := sup
x>0

|b∗
2(x)|
xα

≤ k2 + 2D|S∗(D)|max
(D2

2
,2

)
,

zr := max
{∫ +∞

0

∣
∣
∣

d

dx
nr(x)

∣
∣
∣dx,

1

2

∫ +∞

0
x2

∣
∣
∣

d

dx
nr(x)

∣
∣
∣dx

}

where

nr(x) := e−(a0−η)xα

xr x > 0.

Theorem 2.8 Let α belong to (0,2) and let S∗ be monotonic on [D,+∞). Then,

K(F(·, t),Gα) ≤ 2

π
B̄3Et

[ νt∑

j=1

|βj,t |α{H ∗
1 (|βj,t |) + H ∗

3 (|βj,t |)}
]



Probabilistic Study of the Speed of Approach to Equilibrium 697

+ c‖gα‖
d̃

Et (β(νt )) + 2

π

{
B̄1e

−t (1−2A4/α) + B̄2e
−t (1−2A(8−2α)/α)

+ B5e
−t (1−2A4) + B6e

−t (1−2A6)
}

+ e−t

2
sup
x∈R

|F0(x) + F0(−x − 0) − 1|.

As done elsewhere in this section, it should be noted that the inequality

c‖gα‖
d̃

Et (β(νt )) + 2

π
B̄3Et

[ νt∑

j=1

|βj,t |α{H ∗
1 (|βj,t |) + H ∗

3 (|βj,t |)}
]

≤
(

c‖gα‖
d̃

+ 2

π
B̄3(k3 + k5)

)

e−t (1−qσα/2−2Aq)

+ c‖gα‖
d̃

e−σ t + 2

π
B̄3{H̄ ∗

1 (e−σ t ) + H̄ ∗
3 (e−σ t )}

is useful to yield a bound for K(F(·, t),Gα) depending only on exponential functions, while
an exponential bound can be derived from the next theorem.

Theorem 2.9 Besides the assumptions made in Theorem 2.8, suppose (23) holds true. Then,

K(F(·, t),Gα) ≤ 2

π

{
B̄1e

−t (1−2A4/α) + B̄2e
−t (1−2A(8−2α)/α) + B5e

−t (1−2A4)

+ B6e
−t (1−2A6) +

(
ρ ′B̄3

2 − α − δ
+ ρ ′B̄3

α + δ

)

e−t (1−2A2+2δ/α)
}

+ c‖gα‖
d̃

(e−σ t + e−t (1−qσα/2−2Aq)) + e−t

2
sup
x∈R

|F0(x) + F0(−x − 0) − 1|.

2.4 Brief Comparative Study of Extra Condition on φ0 and on F0

In view of the greater expressiveness of assumptions given for F0, if compared to conditions
on φ0, already stressed at the beginning of Sect. 2.3, we conclude the section with a brief
comparative analysis. This analysis deals, on the one hand, with the two kinds of condi-
tions actually used in the present paper and, on the other hand, with our conditions on F0

compared with those introduced in [30].
Recall that in Sects. 2.1 and 2.2 we used an extra condition which, in the symmetric case,

reduces to

|v∗
0(ξ)| = O(|ξ |δ) as ξ → 0, for some δ > 0 (24)

while, in Sect. 2.3, we have stated a few results under the extra condition

∣
∣
∣(1 − F ∗

0 (x)) − c∗
0

xα

∣
∣
∣ ≤ ρ ′

xα+δ
(x > 0) (25)

for some δ in (0,2 − α) when α belongs to [1,2), and for some δ in (0,2 − α) when α

belongs to (0,1) provided that S∗(x) = (1 − F ∗
0 (x)) − c∗

0x
−α is monotonic for x > D ≥ 0.

As to the former point under discussion, notice that for α in [1,2) one can resort to easy
inequalities, to be explained and used in the proof of Proposition 3.6, to obtain

|v∗
0(ξ)| ≤ |b∗

1(ξ)|
|ξ |α + 2k1|ξ |2−α
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where, in view of (25), |b∗
1(ξ)| = O(|ξ |α+δ). An analogous conclusion holds true when 0 <

α < 1 with b∗
2 and k̄1 in the place of b∗

1 and k1, respectively. See formal developments in
the proof of Proposition 3.7. Hence: If δ belongs to (0,2 − α) with 0 < α < 2, and S∗ is
monotonic on (D,+∞) for some D ≥ 0 when 0 < α < 1, then (25) entails (24).

Moving on to the latter kind of comparisons, it should be recalled that [30], in order that
initial data can satisfy (25), assume

mα+δ :=
∫

R

|x|α+δ|f0(x) − gα(x)|dx < +∞ for some δ > 0. (26)

In Sect. 4 of [23] it is proved that (26) entails (24) and now we prove that (26) yields (25)
when δ ≤ α. Indeed, from the Markov inequality,

|F ∗(x) − Gα(x)| ≤ mα+δ

2xα+δ
.

This, combined with a well-known asymptotic expression for Gα (see, for example,
Sects. 2.4 and 2.5 of [34]), gives

∣
∣
∣
∣F

∗(x) − c∗
0

xα

∣
∣
∣
∣ ≤ mα+δ

2xα+δ
+ O

(
1

x2α

)

(x → +∞).

Then, (25) follows from (26) when δ ≤ α. This last restriction is consistent with Theorem 6.2
in [30], mentioned in (F5), and with the first part of Theorem 2.3. Moreover, it should be
noted that classical asymptotic formulae for gα (see, e.g., [26]) can be applied to exhibit
simple examples of initial data which meet (25) but do not meet (26). In other words, the cri-
terion evoked by [30]—to get (24) together with exponential bounds for χα+δ with δ ≤ α—
could be usefully replaced by the weaker condition (25), as we have done for convergence
with respect to the Kolmogorov metric.

3 Limit Theorems for Weighted Sums of Independent Random Numbers

As mentioned in the introductory paragraph of Sect. 2—see, in particular, explanation for
(16), (17) and (18)—the present section focuses on the study of the convergence in distrib-
ution of weighted sums of independent random variables. This study, besides the interest it
could hold in itself, is essential to prove the theorems already stated in Sect. 2. In point of
fact, the main steps of the arguments used to prove these theorems are set out in the proposi-
tions we are about to enunciate and prove in the present section. Specific indications of how
they are used will be given in the Appendix.

For the present, it should be recalled that we are interested in convergence in distribution
of sums

Sn :=
n∑

j=1

q
(n)
j Xj (27)

with X1,X2, . . . independent and identically distributed real-valued random variables with
common distribution function F0. Moreover, the numbers q

(n)
j are assumed to satisfy (17)–

(18), and F0 is supposed to be a symmetric element of the domain of normal attraction of (7).
Then according to (F3) and (F4), there is c0 ≥ 0 satisfying

a0 = 2c0

∫ +∞

0

sin(x)

xα
dx (28)
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for which

lim
x→−∞|x|αF0(x) = lim

x→+∞xα{1 − F0(x)} = c0

and

1 − φ0(ξ) = (a0 + v0(ξ))|ξ |α (ξ ∈ R)

where v0 is a bounded real-valued function satisfying |v0(ξ)| = o(1) as ξ → 0. See (13)–
(14).

The above conditions, in italics, are assumed to be in force throughout the present sec-
tion, and will not be repeated in the following statements. It is worth recalling that these
statements are inspired by previous work published in [12, 13, 24]. Accordingly, the present
line of reasoning is based on certain inequalities contained in the following lemma where,
as in the rest of the section, for the sake of typographic convenience, qj is used instead of
q

(n)
j .

Lemma 3.1 Let φ̃n be the characteristic function of (27). Then,

|φ̃n(ξ) − ĝα(ξ)| ≤ e−(a0−η)|ξ |α |ξ |α
{ n∑

j=1

qα
j |v0(ξqj )|(1 + 2|ξ |α|v0(ξqj )|)

+ |ξ |αM2
n∑

j=1

qα
j

(
4

5
qα

j + 32

25
M2|ξ |2αq2α

j

)}

I{|ξ | ≤ Dn}

+ 2I{|ξ | > Dn}
( |ξ |

d1

)s[ qs
(n)

ds/α
I{c = 0} + qs

(n)

ds/α
I{q(n) > d1/cα, 0 < c < 1}

+ q
s(1−c)

(n) I{q(n) ≤ d1/cα,0 < c < 1}
]

(29)

holds for any ξ in R, s > 0, c in [0,1), d , d1, k∗ and M being the same as in Theo-
rem 2.2 with v0 in the place of v∗

0 , q(n) = max{q1, . . . qn} and Dn = Dn(c, d) := ( 3
8M

(d ∧
qcα

(n)))
1/αq−1

(n)I{0 < c < 1} + ( 3
8M

d)1/αq−1
(n)I{c = 0}. Moreover, for s = α, c in (0,1) and ξ in

R,

|φ̃n(ξ) − ĝα(ξ)| ≤ |ξ |α
[
e−(a0−η)|ξ |α

(
k∗

I

{
q(n) > d, |ξ | ≤ d1d

1/α

q(n)

}

+ σ̄ (ξ)qα
(n)I

{
q(n) ≤ d1/cα, |ξ | ≤ d1q

c−1
(n)

})

+ 2

dα
1

(qα
(n)

d
I{q(n) > d1/cα} + q

α(c−1)

(n)

)]
(30)

with

σ̄ (ξ) =
n∑

j=1

qα
j |v0(ξqj )| + |ξ |α

(4

5
M2

n∑

j=1

q2α
j + 2

n∑

j=1

qα
j |v0(ξqj )|2 + 32

25
|ξ |3αM4

n∑

j=1

q3α
j

)
.
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Proof According to previous notation, set ‖v0‖ := sup{x>0} |v0(x)| and v̄0(ξ) :=
sup{0<x≤ξ} |v0(x)|. Now, in view of (F4),

|1 − φ0(ξqj )| = |a0 + v0(ξqj )‖ξqj |α ≤ M|ξ |αqα
j

and the last term turns out to be bounded from above by 3d/8 ≤ 3/8 when |ξ |q(n) ≤
(3d/8M)1/α . Since log(1+z) = z+ (4/5)θz|z|2 for |z| ≤ 3/8 and some θz satisfying |θz| ≤ 1
(see, for example, Lemma 3 in Sect. 9.1 of [11]), then |ξ |q(n) ≤ (3d/8M)1/α yields

φ̃n(ξ) = exp

{ n∑

j=1

log(φ0(ξqj ))

}

= exp

{ n∑

j=1

log(1 − (1 − φ0(ξqj )))

}

= exp

{

−
n∑

j=1

(1 − φ0(ξqj )) +
n∑

j=1

r(1 − φ0(ξqj ))

}

with r(x) := (4θ−x/5)|x|2. Moreover, if |ξ | ≤ (3d/8M)1/α/q(n) and 0 < d < 1,

|r(1 − φ0(ξqj ))| ≤ 4

5
M2|ξ |2αq2α

j (j = 1, . . . , n)

and, via (F4),

φ̃n(ξ) = exp
(

−
n∑

j=1

{a0 + v0(ξqj )}|ξqj |α +
n∑

j=1

r(1 − φ0(ξqj ))
)

= exp(−a0|ξ |α) exp(−Bn(ξ) + R1,n(ξ)) (31)

with

Bn(ξ) = |ξ |α
n∑

j=1

qα
j v0(ξqj )

and

|R1,n(ξ)| =
∣
∣
∣
∣

n∑

j=1

r(1 − φ0(ξqj ))

∣
∣
∣
∣ ≤ 4

5
M2|ξ |2α

n∑

j=1

q2α
j .

Writing

exp(−Bn(ξ) + R1,n(ξ)) = 1 − Bn(ξ) + R1,n(ξ)

+ (R1,n(ξ) − Bn(ξ))2
∑

l≥0

(R1,n(ξ) − Bn(ξ))l

l!
l!

(l + 2)!
= 1 − Bn(ξ) + R1,n(ξ) + R2,n(ξ),

with

|R2,n(ξ)| = (R1,n(ξ) − Bn(ξ))2
∣
∣
∣
∑

l≥0

(R1,n(ξ) − Bn(ξ))l

l!
l!

(l + 2)!
∣
∣
∣

≤ 2{Bn(ξ)2 + R1,n(ξ)2} exp(|Bn(ξ)| + |R1,n(ξ)|), (32)
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equalities (31) give

φ̃n(ξ) = exp(−a0|ξ |α){1 − Bn(ξ) + R1,n(ξ) + R2,n(ξ)}. (33)

As to R2,n(ξ), for |ξ |α ≤ (3d/8M)q−α
(n) and any sufficiently small d , one gets

|Bn(ξ)| + |R1,n(ξ)| ≤ |ξ |α
n∑

j=1

v̄0(ξq(n))q
α
j + 4

5
M2|ξ |2αqα

(n)

n∑

j=1

qα
j

≤ |ξ |α
{

v̄0(ξq(n)) + 4

5
M2|ξ |αqα

(n)

}

≤ η|ξ |α

by the definition of d given immediately before the beginning of Sect. 2.1. This entails

exp(|Bn(ξ)| + |R1,n(ξ)|) ≤ eη|ξ |α

for any η in (0, a0) and |ξ | ≤ (3d/8M)1/αq−1
(n) . Next, an application of Jensen’s inequality

yields

|Bn(ξ)|2 + |R1,n(ξ)|2 ≤ |ξ |2α

n∑

j=1

qα
j v0(ξqj )

2 + 16

25
M4|ξ |4α

n∑

j=1

q3α
j

which, in turn, combined with (32), gives

|R2,n(ξ)| ≤
{

2|ξ |2α

n∑

j=1

qα
j v0(ξqj )

2 + 32

25
M4|ξ |4α

n∑

j=1

q3α
j

}
eη|ξ |α .

Now, from (33) with |ξ | ≤ Dn,

|φ̃n(ξ) − exp(−a0|ξ |α)| ≤ e−a0|ξ |α |ξ |α
{ n∑

j=1

|v0(ξq(n))|qα
j + 4

5
M2|ξ |α

n∑

j=1

q2α
j

+
(

2|ξ |α
n∑

j=1

qα
j v0(ξqj )

2 + 32

25
M4|ξ |3α

n∑

j=1

q3α
j

)
eη|ξ |α

}

≤ e−(a0−η)|ξ |α |ξ |α
{ n∑

j=1

qα
j |v0(ξqj )|

(
1 + 2|ξ |α|v0(ξqj )|

)

+ |ξ |αM2
n∑

j=1

q2α
j

(4

5
+ 32

25
M2|ξ |2αqα

j

)}
.

At this stage it remains to consider |ξ | > Dn. In this case, one gets

|ξ |s
ds

1

{
qs

(n)

ds/α
I(c = 0) + qs

(n)

ds/α
I(q(n) > d1/cα,0 < c < 1) + q

s(1−c)

(n) I(q(n) ≤ d1/cα,0 < c < 1)

}

≥ 1

and, to complete the proof for (29), it is enough to take account of the obvious inequality
|φ̃n(ξ) − exp(−a0|ξ |α)| ≤ 2.
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Now, as far as (30) is concerned, take s = α and c in (0,1). Then, (29) becomes

|φ̃n(ξ) − exp(−a0|ξ |α)|
≤ e−(a0−η)|ξ |α |ξ |ασ̄ (ξ)I{|ξ | ≤ Dn}

+ 2
|ξ |α
dα

1

{qα
(n)

d
I(q(n) > d1/cα) + q

α(1−c)

(n) I(q(n) ≤ d1/cα)
}
I{|ξ | > Dn}. (34)

Now, for q(n) > d and |ξ | ≤ Dn(≤ d1d
1/αq−1

(n) ),

σ̄ (ξ) ≤ v̄0(d1d
1/α)(1 + 2dα

1 d1−αv̄0(d1d
1/α)) + (4/5)M2dα

1 d + (32/25)M4d3α
1 d3−α = k∗

and (30) follows from (34) with σ̄ (ξ) replaced by k∗ on {q(n) > d, |ξ | ≤ Dn}. �

Lemma 3.1 can be used to obtain bounds for the χα-distance between Gα and the proba-
bility distribution function Fn of Sn.

Proposition 3.2 The χα-distance between Fn and Gα satisfies

χα(Fn,Gα) ≤ k∗
I(q(n) > d) +

n∑

j=1

qα
j v̄0

(
d1qjq

c−1
(n)

){
1 + 2M1v̄0

(
d1qjq

c−1
(n)

)}

+ qα
(n)

{4

5
M1M

2 + 32

25
M3M

4qα
(n)

}
+ 2

dα
1

{qα
(n)

d
I(q(n) > d1/cα) + q

α(1−c)

(n)

}

for any c in (0,1), with Mr := maxx≥0 e−(a0−η)xα
xrα (r being any positive number).

Proof Consider (30) and observe that

σ̄ (ξ) ≤
n∑

j=1

qα
j v̄0(d1qjq

c−1
(n) )

(
1 + 2M1v̄0(d1qjq

c−1
(n) )

)
+ 4

5
M2M1q

α
(n) + 32

25
M4M3q

2α
(n)

holds true on the set {q(n) ≤ d, |ξ | ≤ Dn} since Dn ≤ d1q
c−1
(n) on this set. �

It is easy to check that the upper bound stated in Proposition 3.2 is o(1) for n → +∞.
Lemma 3.1 can also be exploited to determine analogous bounds for χα+δ and χ2α , under

the extra condition (12).

Proposition 3.3 Suppose (12) is valid for some δ > 0 and take d in such a way that |ξ |q(n) ≤
d1d

1/α (= q(n)Dn if c = 0) entails v̄0(ξqj ) ≤ ρ|ξqj |δ for some ρ > 0. Then,

χα+δ(Fn,Gα) ≤ ρ

n∑

j=1

qα+δ
j + 2ρ2M1+ δ

α

n∑

j=1

qα+2δ
j

+ 4

5
M2M1− δ

α

n∑

j=1

q2α
j + 32

25
M4M3− δ

α

n∑

j=1

q3α
j + 2qα+δ

(n)

dα+δ
1 d1+δ/α
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for any δ ≤ α, and

χ2α(Fn,Gα) ≤ ρM δ
α −1

n∑

j=1

qα+δ
j + 2ρ2M 2δ

α

n∑

j=1

qα+2δ
j + 4M2

5

n∑

j=1

q2α
j

+ 32M4M2

25

n∑

j=1

q3α
j + 2q2α

(n)

d2α
1 d2

for any δ in (α,2α].

Proof From (29) with c = 0 and s = α + δ,

|φ̃n(ξ) − e−a0|ξ |α | ≤ e−(a0−η)|ξ |α |ξ |α
{

ρ

n∑

j=1

qα+δ
j |ξ |δ(1 + 2ρqδ

j |ξ |α+δ)

+ |ξ |αM2
n∑

j=1

q2α
j

(
4

5
+ 32

25
M2qα

j |ξ |2α

)}

I(|ξ | ≤ d1d
1/αq−1

(n) )

+ 2qα+δ
(n)

dα+δ
1 d1+δ/α

|ξ |α+δ
I(|ξ | > d1d

1/αq−1
(n) ).

Then, if δ belongs to (0, α], one easily obtains the former of the inequalities to be proved.
The latter follows similarly from (29) with c = 0 and s = 2α. �

As mentioned at the beginning of Sect. 2.2, here we pass from weighted χ -metrics to
Kolmogorov’s metric via the classical Berry–Esseen inequality

K(Fn,Gα) ≤ 1

π

∫ d̃/q(n)

−d̃/q(n)

∣
∣
∣
φ̃n(ξ) − ĝα(ξ)

ξ

∣
∣
∣dξ + c

d̃
‖gα‖q(n)

c being the constant which appears in Theorem 3.18 in [22].
Take (29), with c = 0 and d̃ = (3d/8M)1/α , and substitute it in the right-hand side of the

above Berry–Esseen inequality to obtain

Proposition 3.4 One has

K(Fn,Gα) ≤ 2

π

n∑

j=1

qα
j

∫ d̃/q(n)

0
e−(a0−η)ξα

ξα−1H(ξ, qj )dξ + 8

5π
M2N2α

n∑

j=1

q2α
j

+ 64

25π
M4N4α

n∑

j=1

q3α
j + c

d̃
‖gα‖q(n)

(35)

with H(ξ, qj ) := |v0(ξqj )|(1 + 2|ξ |α|v0(ξqj )|) and Nl = ∫ +∞
0 exp{−(a0 − η)ξα}ξ l−1dξ .

This upper bound is o(1) as n → +∞.

More informative bounds can be obtained under extra condition (12).
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Proposition 3.5 If (12) is valid for some δ > 0 and d is fixed in such a way that |ξ |q(n) ≤
d1d

1/α (= q(n)Dn if c = 0) entails v0(ξqj ) ≤ ρ|ξqj |δ for some ρ > 0, then

K(Fn,Gα) ≤ 2

π

[
ρNα+δ

n∑

j=1

qα+δ
j + 2ρ2N2(α+δ)

n∑

j=1

qα+2δ
j + 4

5
M2N2α

n∑

j=1

q2α
j

+ 32

25
M4N4α

n∑

j=1

q3α
j

]
+ c

d̃
‖gα‖q(n) = o(1) as n → +∞.

Proof Under the present extra condition, inequality in the previous proposition combined
with inequality H(ξ, qj ) ≤ ρ|ξ |δqδ

j (1 + 2ρqδ
j |ξ |δ), valid for every j and |ξ | ≤ d̃/q(n), yields

the desired bound. �

Now, we proceed to present bounds for K(Fn,Gα) under restrictions on the initial distri-
bution function, rather than on φ0. Notation is the same as in Sect. 2.3 with the proviso that
F ∗

0 is replaced by (symmetric) F0 and, consequently, symbols with ∗, like S∗, h∗, c∗
0 , etc.

must be changed over to symbols without ∗, i.e., S, h, c0, etc., respectively.

Proposition 3.6 Let α be in [1,2) and let the additional restriction that
∫ +∞

0 |S(x)|dx <

+∞ if α = 1 be valid. Then,

K(Fn,Gα) ≤ 2

π

n∑

j=1

{
B1q

2
j + B2q

4−α
j + (B3H1(qj ) + B4H2(qj ))q

α
j

+ B5q
2α
j + B6q

3α
j

}
+ c‖gα‖

d̃
q(n) = o(1) as n → +∞.

In particular, if h is such that |h(x)| := xα|S(x)| ≤ ρ ′/xδ for any x > 0, δ in (0,2 − α) and
some constant ρ ′ > 0, then

H1(q) ≤ ρ ′qδ

2 − α − δ
, H2(q) ≤ ρ ′qδ

α + δ − 1

are valid for any q in (0,1].

Proof We start from the definitions of S and φ0 to obtain, via (28),

1 − φ0(ξ) = a0|ξ |α + 2ξ

∫ +∞

0
S(x) sin(ξx)dx

which, in view of (F4), yields

|ξ |α|v0(ξqj )| = 1

qα
j

|b1(ξqj ) + R1(ξqj )|

where

b1(y) := 2y

∫ +∞

D

sin(yx)S(x)dx and R1(y) := 2y

∫ D

0
sin(yx)S(x)dx.
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For these quantities one can write

|R1(ξqj )| ≤ 2ξ 2q2
j

∫ D

0
x|S(x)|dx = 2k1ξ

2q2
j

with k1 := ∫ D

0 x|S(x)|dx, and

k2 := sup
x>0

|b1(x)|
xα

≤ max

{

‖v0‖ + 2k1,2
∫ +∞

D

|S(x)|dx

}

.

Combination of these inequalities with the definition of H (see Proposition 3.4) gives us

|ξ |α−1|H(ξ, qj )| = |ξ |α−1|v0(ξqj )|(1 + 2|ξ |α|v0(ξqj )|)

≤ 1

|ξ |qα
j

{
|b1(qj ξ)| + |R1(qj ξ)| + 2

qα
j

(|b1(qj ξ)| + |R1(qj ξ)|)2
}

≤ 1

|ξ |qα
j

{
|b1(qj ξ)| + 2k2|b1(qj ξ)‖ξ |α + 2k1|ξqj |2 + 8k1k2q

2
j |ξ |2+α

+ 8k2
1q

4−α
j |ξ |4

}
.

Using this inequality, we obtain

2

π

n∑

j=1

qα
j

∫ d̃/q(n)

0
e−(a0−η)ξα

ξα−1H(ξ, qj )dξ

≤ 2

π

n∑

j=1

{∫ +∞

0
e−(a0−η)ξα

(
|b1(qj ξ)|ξ−1 + 2k2|b1(qj ξ)|ξα−1

)
dξ

+ 2k1N2q
2
j + 8k1k2q

2
j N2+α + 8k2

1N4q
4−α
j

}
. (36)

It remains to study integrals like Ir(q) := ∫ +∞
0 |b1(ξq)|ξ r−1e−(a0−η)ξα

dξ for r ≥ 0. Follow-
ing the argument used in [24] to prove Lemma 7, one can state the inequality

Ir (q) ≤ 2qNr+2

∫ +∞

1
q

|S(x)|dx + 2q2Nr+1

∫ 1
q

0
x|S(x)|dx

= 2Nr+2q
α

∫ +∞

1
|h(y/q)|y−αdy + 2Nr+1q

α

∫ 1

0
|h(y/q)|y1−αdy

= 2Nr+2q
αH2(q) + 2Nr+1q

αH1(q) (37)

with h(x) = xαS(x). To complete the proof of the main part of the proposition it is enough
to use (37) to obtain a bound for the right-hand side of (36) and, then, to replace this bound
for the first sum in the right-hand side of (35). As to the latter claim, recall that H1(q) =
∫ 1

0 y1−α|h(y/q)|dy, H2(q) = ∫ +∞
1 y−α|h(y/q)|dy and use the additional condition. �
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Proposition 3.7 Let α be in (0,2) and let the additional hypothesis that S is monotonic on
[D,+∞) be valid for some D ≥ 0. Then,

K(Fn,Gα) ≤ 2

π

n∑

j=1

{
B̄1q

2
j + B̄2q

4−α
j + B̄3(H1(qj ) + H3(qj ))q

α
j

+ B5q
2α
j + B6q

3α
j

}
+ c‖gα‖

d̃
q(n) = o(1) as n → +∞.

Moreover, if h is such that |h(x)| ≤ ρ ′/xδ for any x > 0, δ in (0,2 − α) and some constant
ρ ′ > 0, one gets

H1(q) ≤ ρ ′qδ

2 − α − δ
, H3(q) ≤ ρ ′qδ

α + δ

for every q in (0,1].

Proof One starts from Proposition 3.4 once again, noticing that equality

|t |αv0(t) = b2(t) + R2(t)

holds with

b2(t) := −2
∫ +∞

D

(1 − cos(tx))dS(x) and R2(t) := R1(t) + 2S(D)(cos(tD) − 1).

Observe that

|R2(ξqj )| ≤ 2k̄1|ξqj |2
with k̄1 = k1 + D2|S(D)|/2. Moreover,

k̄2 = sup
x>0

|b2(x)|
xα

≤ k2 + 2D|S(D)|max
(D2

2
,2

)
.

Then,

|ξ |α−1|H(ξ, qj )| ≤ 1

|ξ |qα
j

{
|b2(ξqj )| + |R2(ξqj )| + 2

(|b2(ξqj )| + |R2(ξqj )|)2

qα
j

}

≤ 1

|ξ |qα
j

{|b2(ξqj )| + 2|ξ |αk̄2|b2(ξqj )| + 2k̄1|ξqj |2 + 8k̄2
1q

4−α
j |ξ |4

+ 8k̄1k̄2q
2
j |ξ |α+2}.

Hence,

K(Fn,Gα) ≤ 2

π

n∑

j=1

{∫ d̃/q(n)

0

e−(a0−η)ξα

ξ
[1 + 2k̄2ξ

α]|b2(ξqj )|dξ

+ (2k̄1N2 + 8k̄1k̄2Nα+2)q
2
j + 8k̄2

1N4q
4−α
j + 4

5
M2N2αq

2α
j + 32

25
M2N4αq

3α
j

}

+ c‖gα‖
d̃

q(n).
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Applying the Fubini theorem and the formula for integration by parts, we can write

Mr (q) :=
∫ d̃/q(n)

0
nr(ξ)

|b2(ξq)|
ξ

dξ (with nr(ξ) := e−(a0−η)ξα

ξ r )

≤ 2
∣
∣
∣S(D)

∫ d̃/q(n)

0
(1 − cos(ξqD))

nr(ξ)

ξ
dξ

∣
∣
∣

+ 2q

∣
∣
∣

∫ +∞

D

S(x)dx

∫ d̃/q(n)

0
nr(ξ) sin(ξqx)dξ

∣
∣
∣

≤ |S(D)|q2D2Nr+2 + M(1)
r (q)

where

M(1)
r (q) := 2q

∣
∣
∣

∫ +∞

D

S(x)dx

∫ d̃/q(n)

0
nr(ξ) sin(ξqx)dξ

∣
∣
∣

≤ 2q

∫ +∞

D

|S(x)|
x

dx

∫ +∞

0
(1 − cos(ξqx))

∣
∣
∣
∣

d

dξ
nr(ξ)

∣
∣
∣
∣dξ

(from integration by parts)

≤ 2
∫ +∞

D

|S(x)|
x

∫ +∞

0

(

1 ∧ (ξqx)2

2

)∣
∣
∣
∣

d

dξ
nr(ξ)

∣
∣
∣
∣dξ

≤ 2zr

{

q2
∫ 1/q

0
x|S(x)|dx +

∫ +∞

1/q

|S(x)|
x

dx

}

(

with zr := max

{∫ +∞

0

∣
∣
∣
∣

d

dξ
nr(ξ)

∣
∣
∣
∣dξ,

1

2

∫ +∞

0
ξ 2

∣
∣
∣
∣

d

dξ
nr(ξ)

∣
∣
∣
∣dξ

})

= 2zr

{
qαH1(q) + qαH3(q)}.

Then,

Mr (q) ≤ q2 | S(D) | D2Nr+2 + 2qαzr{H1(q) + H3(q)}
and

K(Fn,Gα) ≤ 2

π

n∑

j=1

{

M0(qj ) + 2k̄2 Mα(qj ) + (2k̄1N2 + 8k̄1k̄2Nα+2)q
2
j

+ 8k̄2
1N4q

4−α
j + 4

5
M2N2αq

2α
j + 32

25
M2N4αq

3α
j

}

+ c‖gα‖
d̃

q(n).

To complete the proof suffices it to replace the quantities M with their upper bounds and,
next, to recall the definition of the constants B̄ . �

Appendix

In this part of the paper we present the proofs of the theorems stated in Sect. 2. For the sake
of expository clarity, let us recall the common inspiring principles for all of these proofs.
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First of all, we refer to representation (5) which, combined with (15), gives

|φ(ξ, t) − ĝα(ξ)| ≤ Et(|φ̃νt (ξ ;Re(φ0)) − ĝα(ξ)|) + |Im(φ0(ξ))|e−t (ξ ∈ R) (38)

where φ̃νt ( · ; Re(φ0)) is equal to φ̃n(·) when n = νt , qj = |βj,t | (j = 1, . . . , νt ) and, in the
definition of φ̃n, φ0 is replaced by Reφ0. Analogously,

|F(x, t) − Gα(x)| ≤ Et(|Fνt (x;F ∗
0 ) − Gα(x)|) + |F0(x) − F ∗

0 (x)|e−t (x ∈ R) (39)

where Fνt ( · ; F ∗
0 ) is obtained from Fn(·) by replacing n, qj and F0 with νt , |βj,t | and F ∗

0 ,
respectively.

Proof of Theorem 2.2 Apply (38) to write

χα(F (·, t),Gα) ≤ Et(χα(Fνt ( · ;F ∗
0 ),Gα)) + e−t sup

ξ∈R

|Im(v0(ξ))|

and, next, replace χα(Fνt ( · ;F ∗
0 ),Gα) with its upper bound stated in Proposition 3.2. �

Proof of Theorem 2.3 Argue as in the previous proof by using the upper bounds obtained
in Proposition 3.3, instead of the upper bound of Proposition 3.2. Moreover, to evaluate
expectations, make use of the obvious inequality Et(β

m
(νt )

) ≤ Et [∑νt

j=1 |βj,t |m] and, then, of
(19) and (20). �

Proof of Theorem 2.4 In view of (39), write

K(F(·, t),Gα) ≤ Et(K(Fνt ( · ;F ∗
0 ),Gα)) + e−t

2
sup
x∈R

|F0(x) + F0(−x − 0) − 1|

and replace K(Fνt ( · ;F ∗
0 ),Gα) with its upper bound determined in Proposition 3.4. Finally

use (19) to evaluate expectation. �

The remaining theorems from 2.5 to 2.9 can be proved following the same line of reason-
ing, according to the scheme: Resort to Proposition 3.5 and to (19) for Theorem 2.5. Apply
Proposition 3.6 and (19)–(20) to prove Theorems 2.6 and 2.7. Finally, use Proposition 3.7
and (19)–(20) to prove Theorems 2.8 and 2.9.

It remains to prove Theorem 2.1. Its former part is a straightforward consequence of
Theorem 2.4. As to the latter, we use the same argument as in the proof of Theorem 1 in
[19], based on [16]. Accordingly, for every t > 0 we define

Wt := (�νt , λ1,t , . . . λνt ,t , δ0, . . . , γt , θt , νt ,Ut (1/2),Ut (1/3), . . .)

where: λj,t stands for a conditional distribution of |βj,t |X∗
j,t , given (γt , θt , νt );

�νt is the νt -fold convolution of λ1,t , . . . λνt ,t ; δx indicates unit mass at x; Ut(ξ) :=
max1≤j≤νt λj,t ([−ξ, ξ ]c). Moreover, the X∗

j,t are conditionally i.i.d. with common distri-
bution F ∗

0 . To grasp the importance of Wt , notice that its components represent the essential
ingredients of central limit problems. As to this fundamental theorem, we refer to Sect. 16.8
of [17]. The range of Wt can be seen as a subset of S := P(R̄)∞ × Ḡ × [0,2π)∞ × R̄

∞,
where: R̄ := [−∞,+∞]; P(M) indicates the set of all probability measures on the Borel
class B(M) on some metric space M ; Ḡ is a distinguished metrizable compactification of G.
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These spaces are endowed with topologies specified in Sect. 3.2 of [19], which make S a sep-
arable compact metric space. Now recall that, under the assumption of the latter part of The-
orem 2.1, (V ∗

tn
:= ∑νtn

j=1 |βj,tn |X∗
j,tn

)n≥1 must converge in distribution. Next, from Lemma
3 in [19], with slight changes, the sequence of the laws of the vectors (Wtn)n≥1 contains a
subsequence (Wtn′ )n′ which is weakly convergent to a probability measure Q supported by
P(R) × {δ0}∞ × Ḡ × [0,2π)∞ × {+∞} × {0}∞. At this stage, an application of the Sko-
rokhod representation theorem (see, e.g., [1, 14]), combined both with the properties of the
support of Q and with (F1), entails the existence of random vectors Ŵtn′ := (�̂ν̂t

n′ , λ̂1,tn′ , . . .)

defined on a suitable space (	̂, F̂ , P̂ ), in such a way that Wtn′ and Ŵtn′ have the same law
(for every n′). Moreover,

�̂ν̂t
n′ ⇒ �̂, λ̂j,tn′ ⇒ δ0 (j = 1,2, . . .)

ν̂tn′ → +∞, Ûtn′ (1/k) → 0 (k = 1,2, . . .), (40)

β̂(n′) := max{|β̂1,tn′ |, . . . |β̂ν̂t
n′ ,tn′ |} → 0

where the convergence must be understood as pointwise convergence on 	̂ and ⇒ desig-
nates weak convergence of probability measures. From (40) and Theorem 16.24 of [17],
there is a random Lévy measure μ, symmetric about zero, such that

lim
n′→+∞

ν̂t
n′∑

j=1

λ̂j,tn′ [x,+∞) = lim
n′→+∞

ν̂t
n′∑

j=1

{

1 − F ∗
0

(
x

|β̂j,tn′ |
)}

= μ[x,+∞) (41)

holds pointwise on 	̂ for every x > 0. To complete the proof, we assume that
limx→+∞ xα{1 − F ∗

0 (x)} = +∞ and show that this assumption contradicts (41). Indeed,
the assumption implies that for any k > 0 there is ε > 0 such that xα{1 − F ∗

0 (x)} ≥ k for
every x > 1/ε and, therefore,

νn,x :=
ν̂t

n′∑

j=1

{

1 − F ∗
0

(
x

|β̂j,tn′ |
)}

≥ k

xα
I{β̂(n′) < xε}

ν̂t
n′∑

j=1

|β̂j,tn′ |α

= k

xα
I{β̂(n′) < xε}.

Since (40) yields β̂(n′) → 0, then lim supn→+∞νn,x ≥ kx−α , which contradicts (41) in view
of the arbitrariness of k.
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